Ilustração de programação dinâmica (ver Anderson, Sweeney & Williams, An Intro to Mgt Science, 6ª Ed.), Ou Hillier & Lieberman, várias edições.
Temos uma rede em vários estados / cidades. Objetivo é encontrar o trajeto mais curto de cada estado para o estado final / último.
Como caso especial, isso nos permite encontrar o caminho mais barato / mais curto do estado 1 para o estado / cidade final .
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | |
S1 | 0 | 1 | 5 | 2 | ||||||
S2 | 13 | 12 | 11 | |||||||
S3 | 6 | 10 | 4 | |||||||
S4 | 12 | 14 | ||||||||
S5 | 3 | 9 | ||||||||
S6 | 6 | 5 | ||||||||
S7 | 8 | 10 | ||||||||
S8 | 5 | |||||||||
S9 | 2 |
REPORT
SCRIPT
FONTE 4 Application Model Library Lindo Systems Inc Lindo Systems Inc, 2018